

FC7 R0b User Manual

 version 0.1

 2014.02.25

FC7 project homepage:

Contact: Mark.Pesaresi@imperial.ac.uk & Paschalis.Vichoudis@cern.ch

file:///D:/manoel_glib/GLIB%20Project%20Docs/GLIB%20Board/GLIB%20Documents/GLIB%20Spec/Spec%20done%20with%20template/Paschalis.Vichoudis@cern.ch

2 FC7 R0b User Manual - draft

v0.1

Document History

 V0.1, 2014.02.25: First draft

FC7 R0b User Manual - draft 3

v0.1

Table of Contents

Document History .. 2

Table of Contents ... 3

1. INTRODUCTION .. 4

2. ARCHITECTURE ... 5

3. How to use the FC7 ... 6

3.1 Hardware ... 6

3.2.1. Switches ... 6

3.2.2. Powering .. 7

3.2.3. Configuration ... 7

3.2.4. Jumpers .. 14

3.2.5. Resets ... 14

3.2.6. LEDs .. 14

3.2 Firmware ... 15

3.2.1. Requirements ... 15

3.2.2. Installation ... 15

3.3 Software .. 17

3.3.1. Requirements ... 17

3.3.2. Installation ... 17

3.3.3. Testing access to the FC7 ... 18

4. REFERENCES .. 20

5. APPENDIX A .. 21

6. APPENDIX B ... 23

4 FC7 R0b User Manual - draft

v0.1

1. INTRODUCTION

To be completed

Figure 1-1: FC7-R0b top and bottom view

FC7 R0b User Manual - draft 5

v0.1

2. ARCHITECTURE

6 FC7 R0b User Manual - draft

v0.1

3. How to use the FC7

3.1 Hardware

3.2.1. Switches

CPLD CONFIG (J1)

The CPLD CONFIG (J1) dip switch provides the CPLD with the JTAG and FPGA boot options

used for configuration of the board.

Switch numbering convention – a scheme in which the orientation of the switch (switches facing left or right) becomes
inconsequential to the settings, as defined in this document, is used. The figure below defines the convention. Switch A
is the switch closest to the BOTTOM of the board. Switches follow alphabetical order towards the TOP of the board with
switch H being the switch closest to the TOP of the board.

Switch orientation picture needed.

The table below describes the switch options.

Table 3-1: CPLD CONFIG switch settings

Switch Description Default

A

Selects whether the FPGA is included in the JTAG chain or not.

 UP: not included

 DOWN: included

DOWN

B

Allows configuration of the microcontroller using the JTAG chain.

 UP: not included

 DOWN: included
NOTE: programming the microcontroller using the JTAG chain precludes
any other device from joining the chain. Consequently, switches A, C & D
should be UP when attempting to configure the microcontroller.

UP

C

Selects whether an FMC occupying the L8 slot is included in the JTAG chain or
not.

 UP: not included

 DOWN: automatically included when an FMC is inserted into the L8
slot

DOWN

D

Selects whether an FMC occupying the L12 slot is included in the JTAG chain
or not.

 UP: not included

 DOWN: automatically included when an FMC is inserted into the L12
slot

DOWN

FC7 R0b User Manual - draft 7

v0.1

E

Selects whether the FPGA should be configured off the SPI Flash PROM or the
microSD card on power on.

 UP: FPGA is configured via SPI Flash PROM

 DOWN: FPGA is configured via microSD card
NOTE: switch should be set to DOWN if communication with the micro-
SD card is required (e.g. for remote data uploading).

DOWN

F Reserved. UP

G

Allows direct SPI programming.

 UP: SPI Flash programmed via FPGA (JTAG)

 DOWN: direct access to SPI Flash via SWITCHED JTAG header (J4)

UP

H

Selects JTAG source.

 UP: ‘local’ SWITCHED JTAG header (J4) is selected

 DOWN: ‘crate’ AMC connector JTAG is selected

UP

TO DO: IP address switch, debug header

3.2.2. Powering

TO DO: power jumper, switch

3.2.3. Configuration

JTAG connectors

The FC7 features two onboard JTAG headers.

 The CPLD JTAG (J3) header is for configuring the CPLD only.

 The SWITCHED JTAG (J4) connector is a JTAG header which allows for configuration

of the FPGA or other onboard devices by use of the CPLD CONFIG dip switch (J1) as

described in Table 3-1. Configuration options for the FPGA are described below.

JTAG connector figures needed.

An alternative option for accessing the on board JTAG chain (excluding CPLD) exists. By use

of the appropriate switch setting (Table 3-1), one can select between using the local JTAG

header (J4) or the AMC connector JTAG interface. Use of the AMC JTAG interface either

requires a uTCA crate and an AMC card that support JTAG configuration over the backplane

or a supported AMC extender card.

8 FC7 R0b User Manual - draft

v0.1

Direct programming of CPLD via JTAG

To update the CPLD with the latest binary:

1. Connect the JTAG programmer to the CPLD JTAG (J3) header.

2. Power the board on. This programming procedure will only work in desktop power

mode unless the microcontroller is already programmed.

3. Using IMPACT, commence a Boundary Scan. Right click after completion and

“Initialize Chain”.

4. When prompted to assign a new configuration file, navigate to the top.jed binary.

Right click on the XC2C256 device, selecting “Program”.

Direct programming of Atmel microcontroller via JTAG

The Atmel microcontroller must be programmed if the user wants to take advantage of the

advanced functionality available to the FC7 such as crate operation, remote power and

network management, FPGA configuration off the SD card, and remote firmware loading.

NOTE: The programming procedure has been tested & validated on native (32/64bit) Linux

and (32/64bit) Windows 7, using the JTAGICEII programmer tool under AVR32 Studio 4,

and the JTAGICEII/III programmer tool under Atmel Studio 6.1 respectively.

To update the microcontroller with the latest MMC binary:

1. Connect the JTAGICEII or JTAGICEIII programmer tool to the SWITCHED JTAG (J4)

header.

2. Set the CPLD CONFIG (J1) dip switch B to DOWN. Switches A, C and D must be UP

(see Table 3-1).

3. Power the board on. This programming procedure will only work in desktop power

mode.

4. Under AVR32 Studio 4 or Atmel Studio 6, connect to the tool. Exact instructions will

depend on the version of software you are using.

 In Studio 6, right click on the JTAGICE tool under “Available Tools” and select

“Device Programming”. Make sure the correct tool (JTAGICEII or JTAGICEIII),

device (AT32UC3A3256) and interface (JTAG) are being used before clicking

“Apply”. Select the “Memories” tab and follow the instructions below.

 In AVR32 Studio 4, find the JTAGICEII tool under “AVR Targets”. Right click

and follow the instructions below.

5. Erase the chip. This will prevent any old User Page configuration data from being

uploaded after the next step is run.

 In Studio 6, under “Device”, select “Erase Chip” and run “Erase Now”.

 In AVR32 Studio 4, select “Chip Erase”.

FC7 R0b User Manual - draft 9

v0.1

6. Follow this up by erasing the User Page. This will make sure that new User Page

configuration data is updated once the new program code is uploaded and executed

in the next step.

 In Studio 6, under “Device”, select “Erase User Page” and run “Erase Now”.

 In AVR32 Studio 4, select “Erase”. Select “Also erase the User Page” and click

OK.

7. Finally program the microcontroller with the latest fc7_mmc.hex or fc7_mmc.elf file.

 In Studio 6, under “Flash”, navigate to the desired hex file and click

“Program”.

 In AVR32 Studio 4, select “Program”, navigate to the desired elf file, check all

the program options and click OK.

The FPGA can be both programmed directly via JTAG, or indirectly via non-volatile images

stored either on an SPI Flash PROM or an optional SD card. Firmware images can either be

stored directly to the SD card from a PC, or can be uploaded remotely via the FPGA using

IPBus, providing the FPGA is already programmed with appropriate firmware.

Direct programming of FPGA via JTAG

To program the FPGA directly:

1. Generate the firmware bit file. The bitgen option “–g Compress” can be set to TRUE

to speed up the process.

2. Connect the JTAG programmer to the SWITCHED JTAG (J4) header.

3. Set the CPLD CONFIG (J1) dip switch A to DOWN. Switch B must be UP (see Table

3-1).

4. Power the board on.

5. Using IMPACT, commence a Boundary Scan. Right click after completion and

“Initialize Chain”.

6. When prompted to assign new configuration file, navigate to the generated FPGA

.bit file. Right click on the XC7K420 device, selecting “Program”.

Indirect programming of FPGA via SPI Flash PROM

1. Generate the firmware bit file. The bitgen option “–g Compress” should be set to

TRUE as this vastly speeds up the programming process.

10 FC7 R0b User Manual - draft

v0.1

2. Connect the JTAG programmer to the SWITCHED JTAG (J4) header.

3. Set the CPLD CONFIG (J1) dip switch A to DOWN. Switches B and E must be UP (see

Table 3-1).

4. Power the board on.

5. Using IMPACT, create a PROM file, using the parameters:

 SPI Flash -> Configure Single FPGA

 Auto Select PROM

 File Format: MCS

6. Add the firmware bit file. Once complete, “Generate File”.

7. Commence a Boundary Scan. Right click after completion and “Initialize Chain”.

8. When prompted to assign new configuration file, cancel, but when prompted to add

SPI/BPI Flash, accept and navigate to the generated MCS file.

9. Select SPI PROM N25Q256, Data Width 1.

10. Right click on the SPI/BPI Flash device, selecting “Program”.

Indirect programming of FPGA via microSD card

The MMC is able to configure the FPGA on power up if a valid programming file is available

on a microSD card inserted into the FC7. Firmware images can be stored directly to the

microSD card using a SD card writer and a SD file management utility called imgtool. The

imgtool utility is currently supported as part of the CACTUS project. Any issues or bug

reports related to the use of the imgtool utility to should be directed to the CACTUS TRAC

FC7 R0b User Manual - draft 11

v0.1

ticket system, https://svnweb.cern.ch/trac/cactus/report/1. Please check to see if your

question has already been asked before submitting a new ticket.

NOTE: The imgtool procedure has been tested & validated on native (32/64bit) Linux SLC5

& SLC6 only

WARNING: Remote programming of the FPGA (see below) can only be guaranteed if the FC7
Golden Firmware Image “GoldenImage.bin” from the FC7 SVN repository is correctly stored on the
microSD card.

To store firmware images to the microSD card directly:

2. Generate the firmware bit file making sure that the bitgen option “–g Compress” is

set to FALSE

3. Using IMPACT, create a PROM file, using the parameters:

 Generic Parallel PROM

 Auto Select PROM

 File Format: BIN (Swap Bits ON)

4. Add the firmware bit file. Once complete, “Generate File”.

5. From SVN, check out:

svn co https://svn.cern.ch/reps/cactus/tags/ic_mmc/ic_mmc_v1_6_0

6. Change into the “imperial_mmc/tools/imgtool” directory and run “make

Board=FC7_0” to create the “imgtool” executable

https://svnweb.cern.ch/trac/cactus/report/1

12 FC7 R0b User Manual - draft

v0.1

7. If using an external card-reader, plug it into your linux PC WITHOUT THE microSD

CARD INSERTED.

8. Insert the microSD card.

9. Run “sudo /sbin/fdisk -l”. There should be an entry that says “Disk XXX doesn't

contain a valid partition table”. Note the name of this disk.

10. Run “sudo chmod 777 XXX”

11. The “imgtool” executable has several options. The usage options can be seen by

running “./imgtool ?”:

Table 3-2: imgtool command options

Command Description

format <label> Formats an image

list List files in an image

add <name> <file> Adds a file to an image

get <name> <file> Gets a file from an image

del <name> Deletes a file from an image

check <name> Verifies the checksum of a file

12. Usage of “imgtool” is, then,

./imgtool XXX Command [parameters]

13. To prepare a microSD card do:

./imgtool XXX format Firmware

./imgtool XXX add YYY.bin ZZZ.bin

Where XXX is the name of the microSD card as reported by “fdisk” in step 8, YYY.bin

is the name you wish the firmware to have on the microSD card and ZZZ.bin is the

name of the PROM file created in step 2. This formats also the microSD card and

gives it the volume name “Firmware”.

The name of the firmware image (YYY) from which the card is booted at power-up

must always be “GoldenImage.bin”; if this file does not exist on the microSD card,

the FPGA will not be programmed at power-up and so Ethernet access will not be

available. Any number of additional firmware images can be stored to the microSD

card using this method, provided there is enough space left on the volume (min

20MB). The FPGA can be re-configured with the desired firmware image via IPbus

after power-up.

14. To list the contents of an existing SD card:

./imgtool XXX list

FC7 R0b User Manual - draft 13

v0.1

The conversion between the native endianness of the host system to big-endian,

required for the Atmel UC3A3256, is handled automatically by the imgtool utility.

15. Insert the microSD card into the FC7 and power on, making sure that switch E on the

CPLD CONFIG (J1) is set to the DOWN position beforehand (see Table 3-1). After a

couple of seconds, the board should load the “GoldenImage.bin” file stored on the

microSD card.

Remote programming of FPGA via microSD card and IPbus

The FC7 also allows for remote programming of the FPGA over IPbus, again by use of

persistent storage of firmware images on the microSD card. The mechanism for remote

programming is described in Appendix ?. Any number of firmware images can be stored on

the microSD card, provided there is sufficient space on the volume, and the desired image

to configure the FPGA can be selected via an IPBus command.

NOTE: New or non-SFWFS formatted microSD cards must be formatted using the imgtool

utility beforehand. It is highly recommended to follow the steps described in the section

“Indirect programming of FPGA via microSD card” and add the SVN “GoldenImage.bin” to

the microSD card first.

NOTE: The following procedure has only been tested & validated on native and virtual

(32/64bit) Linux SLC5 & SLC6 so far.

Testing using uHAL for Windows to follow.

WARNING: Remote programming of the FPGA can only be guaranteed if the FC7 Golden Firmware
Image “GoldenImage.bin” from the FC7 SVN repository is already correctly stored on the microSD
card. At present, the MMC will allow the user to overwrite the Golden Firmware Image remotely
for ease of debugging. The Golden Image should be inviolate to ensure IPBus access is always
guaranteed so this feature will be removed in future.

To remotely program the FPGA over IPBus:

1. Generate the firmware bit file, making sure that the bitgen option “–g Compress” is

set to FALSE

2. Set up the software environment according to Section 3.3

3. Insert the microSD card with a valid “GoldenImage.bin” file into the FC7 and power

on, making sure that switch E on the CPLD CONFIG (J1) is set to the DOWN position

beforehand (see Table 3-1). After a couple of seconds, the board should load the

“GoldenImage.bin” file stored on the microSD card.

14 FC7 R0b User Manual - draft

v0.1

4. Run the following executable to reprogram the FPGA with the generated bitfile.

cd sw/fc7

source setup.sh

cd tests

./bin/fc7-userimage-reprogram.exe –i ip_address –f xilinx_bit_file

The executable will convert the provided bit file, generating a bin file which is both byte-

swapped to handle the endianness of the host system, and bit-swapped for compatibility

with selectMAP configuration of the FPGA. The generated file “UserImage.bin” is

(over)written to the microSD card, before the instruction to reset the FPGA is transmitted.

5. Contained within the instruction to reset the FPGA is also the name of the firmware

image to load, once the FPGA is ready to be configured. Two auxiliary executables

are provided to reboot and reconfigure the FPGA; either with the “GoldenImage.bin”

or the “UserImage.bin”.

./bin/fc7-boot-goldenimage.exe –i ip_address

./bin/fc7-boot-userimage.exe –i ip_address

If the executable fails to write a valid “UserImage.bin” file to the microSD card, or some

other error occurs, the “GoldenImage.bin” is loaded automatically so that IPBus

communication and remote access is always available. More details can be found in

Appendix A.

3.2.4. Jumpers

TO DO: Port3, CLK in/out

3.2.5. Resets

TO DO: Reset switches

3.2.6. LEDs

TO DO: picture of LEDs and labels

Table 3-3: LED status codes (not all combinations included)

LED COLOUR STATUS

CPLD LED

RED FPGA in reset

GREEN (blink) CPLD clock

GREEN FPGA configured

BLUE SPI PROM configuration mode

FC7 R0b User Manual - draft 15

v0.1

SYS LED TOP
RED Golden Image Firmware loaded

BLUE (blink) IPBus 1Hz clock

SYS LED BOTTOM

RED CDCE PLL not locked

ORANGE CDCE TTC clock out of phase

GREEN CDCE ok

MMC LED GREEN Loading firmware from SD

3.2 Firmware

3.2.1. Requirements

To build custom firmware for the FC7, the following packages are required:

IPBus 2.0v1 into [project_root]/cactus/tags/ipbus_fw/ipbus_2_0_v1

svn co https://svn.cern.ch/reps/cactus/tags/ipbus_fw/ipbus_2_0_v1

FC7 3.6.0 into [project_root]/fc7/tags/fc7_3.6.0

svn co https://svn.cern.ch/reps/ph-ese/be/fc7/tags/fc7_3.6.0

To build custom MMC software, the following package is required in addition:

IC_MMC v1.60 into [project_root]/cactus/tags/ic_mmc/ic_mmc_v1_6_0

svn co https://svn.cern.ch/reps/cactus/tags/ic_mmc/ic_mmc_v1_6_0

Xilinx ISE v14.6 is recommended for firmware development and implementation.

3.2.2. Installation

The folder tree should be as described in Figure 3-1.

To use the existing example code as is, compile the “fpga_fc7_golden.xise” project file

under fc7/tags/[tag]/fw/prj/fpga_fc7_golden using Xilinx ISE.

When developing your own code, please keep in mind that in order to receive support, the

files under fc7/tags/[tag]/fw/src/sys MUST remain unchanged. The files under

fc7/tags/[tag]/fw/src/usr can be freely modified according to the user needs. The CPLD

16 FC7 R0b User Manual - draft

v0.1

firmware & MMC software source is provided for your reference only and we strongly

suggest not modifying it.

Figure 3-1: Folder Tree

Tagged binaries are provided that are guaranteed for cross-compatibility. These can be

found in the following locations:

 CPLD “top.jed” in fc7/tags/[tag]/fw/prj/cpld_fc7

- for installation, follow the guide “Direct programming of CPLD via JTAG”

in Section 3.2.3 above.

 MMC “fc7_mmc.hex” or “fc7_mmc.elf” in fc7/tags/[tag]/fw/prj/mmc_fc7/RunFC7

- for installation, follow the guide “Direct programming of Atmel

microcontroller via JTAG” in Section 3.2.3 above.

 FPGA “GoldenImage.bin” in fc7/tags/[tag]/fw/prj/fpga_fc7_golden

- for installation, follow the guide “Indirect programming of FPGA via

microSD card” in Section 3.2.3 above.

FC7 R0b User Manual - draft 17

v0.1

3.3 Software

3.3.1. Requirements

 Linux SL6-64 bit (recommended) or Linux SL5-32/64 bit (deprecated), native or

virtual.

 Gigabit Ethernet drivers.

 IPBus suite version 2.2 (installation instructions available at https://svnweb.cern.ch/

trac/cactus/wiki/uhalQuickTutorial#HowtoInstalltheIPbusSuite)

TO DO: Testing uHAL for Windows.

3.3.2. Installation

Currently the FC7 software package is available via SVN only and needs to be compiled to be

used.

The FC7 software package is organized into 2 sub-packages:

 fc7/fc7: C++ driver library

 fc7/tests: test programs and scripts

The driver library contains the high level functions. The tests folder contains collected

binaries and scripts for testing FC7s. For running python scripts based on the PyChips

library, the library source is provided alongside the top level fc7 folder as pychips/.

TO DO: Python bindings for C++ to allow old pychips scripts to

eventually run in uHAL framework.

To install the software:

1. Check out from SVN

svn co https://svn.cern.ch/reps/ph-ese/be/fc7/tags/fc7_3.6.0/sw

2. Set up the environment using the setup script, editing as appropriate

cd sw/fc7

source setup.sh

3. Compile

make

https://svnweb.cern.ch/%20trac/cactus/wiki/uhalQuickTutorial#HowtoInstalltheIPbusSuite
https://svnweb.cern.ch/%20trac/cactus/wiki/uhalQuickTutorial#HowtoInstalltheIPbusSuite

18 FC7 R0b User Manual - draft

v0.1

3.3.3. Testing access to the FC7

Before starting, make sure the setup.sh script has been sourced.

cd sw/fc7

source setup.sh

In the fc7/tests folder, the following are available:

 bin: test executables

 scripts: test python scripts – tested with Python 2.4.3

WARNING: Currently the test python scripts under fc7/tests/scripts use PyChips, which is now
deprecated. These will eventually be replaced with scripts that use the supported uHAL/python
bound uHAL. PyChips is NOT compatible with Python 3.x

FC7 R0b User Manual - draft 19

v0.1

20 FC7 R0b User Manual - draft

v0.1

4. REFERENCES

FC7 R0b User Manual - draft 21

v0.1

5. APPENDIX A

TO DO: clean this up with diagrams etc.

MMC & Transactor are IPBus masters, FPGA is IPBus slave.

IPBus transport layer between MMC master and FPGA slave is an SPI x1 interface (MMC is

SPI master). Four communication lines; MOSI (data to FPGA), MISO (data from FPGA),

Master CLK, CS.

Additional 16bit DMA bus for data transfers between MMC and FPGA, controlled by MMC.

Two communication lines; NRD (read data bus on falling edge, increment memory address),

NWE (write to data bus on falling edge, increment memory address).

FPGA IPBus slave:

Data/commands to be interpreted by the MMC (e.g. load firmware to sd, delete firmware

from sd, reboot fpga) are received from the standard IPBus Transactor and transparently

packed into a 32bit load FIFO on the FPGA (FPGAtoMMC). A separate return FIFO

(MMCtoFPGA) is also available to read from, containing data from the MMC. The FIFOs

have the IPBus register address 0x0402, each individually accessed by means of the IPBus

R/W flag.

Pointer records for the two FIFOs are kept in the slave, accessible in the IPBus register

space. The FPGAtoMMC FIFO record is on 0x0400, and the MMCtoFPGA FIFO record is on

0x0401.

The MMC regularly reads the FPGAtoMMC pointer record on the FPGA via the SPI IPBus. If

data are detected in the FIFO (write pointer>=read pointer+2), the MMC initiates a Direct

Memory Access on the FIFO in the FPGA, reading two 16bit words. The first word is an

instruction command, the second indicates the length of the payload to be read. The FIFO is

continually read via DMA until the payload is fully received and the appropriate instructions

are executed (e.g. write payload to SD card, set boot image filename to be loaded).

Following this, the MMC also loads a reply into the MMCtoFPGA FIFO provided there is

adequate space available. This is checked by querying the MMCtoFPGA FIFO record via

IPBus.

22 FC7 R0b User Manual - draft

v0.1

Firmware upload to FPGA from microSD card

The SD-card is formatted with a file-system known as simple firmware file-system (SFWFS).

The storage medium is divided into “slots” around the size of a firmware image,

guaranteeing an image can be stored without fragmentation. An index table at the front of

the disk stores whether a slot is in use, a file name, file size and checksum, which allows

access by name. A full library of SFWFS operations is included. The image files are stored in

the blocks after the header. They do not require their own header and just start at the

appropriate block (slot) and end before the next image. Any unused space in the slot should

be padded with 0xFFFFFFFF if the images are being used to configure the FPGA.

FC7 R0b User Manual - draft 23

v0.1

6. APPENDIX B

TO DO: Clean this up with diagrams etc.

IPMI management using ipmitool

This guide assumes that the crate MCH is on the network at address 192.168.0.41 and has a

blank username/password. To address a specific card, its slot number must be converted to

an IPMB-L address, as indicated in the lookup table below.

Table 6-1: Lookup Table (uTCA.0 SPEC R1.0 Page 3-12)

Slot Number IPMB-L Address

1 0x72

2 0x74

3 0x76

4 0x78

5 0x7A

6 0x7C

7 0x7E

8 0x80

9 0x82

10 0x84

11 0x86

12 0x88

Network configuration via the MMC

The IP and MAC address of the board can be optionally configured using IPMI commands to

the MMC. However, in order for IPBus to pick up changes to the network configuration, the

IPBus module ipbus_ctrl should be configured to use the ‘internally’ provided mac and ip

addresses beforehand. To do this, the project needs to be regenerated with the following

modification to “system_core.vhd” under fc7/tags/[tag]/fw/src/sys/sys:

--===================================--

ipb: entity work.ipbus_ctrl

--===================================--

generic map

(

 mac_cfg => internal,

 ip_cfg => internal,

 n_oob => 1

)

24 FC7 R0b User Manual - draft

v0.1

...

TO DO: make this default configuration in golden?

With this firmware, the network configuration can be set as follows:

To set the MAC address,

ipmitool -H 192.168.0.41 -P "" -B 0 -T 0x82 -b 7 -t ipmb_address raw

0x30 0x02 0x00 0x11 0x22 0x33 0x44 0x55

will configure the board with the MAC address 00 : 11 : 22 : 33 : 44 : 55

To set the IP address,

ipmitool -H 192.168.0.41 -P "" -B 0 -T 0x82 -b 7 -t ipmb_address raw

0x30 0x03 0xC0 0xA8 0x00 0x7B

will configure the board with the IP address 192.168.0.123

To save the new configuration to the EEPROM,

ipmitool -H 192.168.0.41 -P "" -B 0 -T 0x82 -b 7 -t ipmb_address raw

0x30 0x01 0xFE 0xEF

otherwise any configuration applied will only be valid until the MMC is power cycled.

To read back the current network settings,

ipmitool -H 192.168.0.41 -P "" -B 0 -T 0x82 -b 7 -t ipmb_address raw

0x30 0x05

will return the MAC and IP addresses in the form,

IP[0] IP[1] IP[2] IP[3] MAC[0] MAC[1] MAC[2] MAC [3] MAC[4] MAC[5] FLAGS

e.g. “192 168 0 123 00 11 22 33 44 55 00” for the above example configuration. The flags

(returned as 0x00 in the example), is a bitmask. The only bit that is currently used is 0x80

FC7 R0b User Manual - draft 25

v0.1

and if this is set then it means the network parameters have been changed but have not

been copied to EEPROM.

TO DO: Will change when CMS wide definition of this procedure using new

NetFns is implemented. Eventually best to describe this section using

the helper script below.

Power cycling the board

The FC7 can be remotely reset using an IPMI command that only applies to the board itself

(i.e. a local reset) without changing the module power state in the crate. All power rails

except the external 12V payload power and 3.3V management power is reset in this

process.

To reset the board,

ipmitool -H 192.168.0.41 -P "" -B 0 -T 0x82 -b 7 -t ipmb_address raw

0x30 0xFF 0xDE 0xAD

Sending raw user defined OEM commands

User defined IPMI commands can be implemented in the MMC code for extended purposes

(see ??). The OEM group extension 0x2E is used as the NetFunction (NetFN) code to begin

the transaction.

For example,

ipmitool -H 192.168.0.41 -P "" -B 0 -T 0x82 -b 7 -t ipmb_address raw

0x2E raw_commands

IPMI python script

A helper script exists that can be used to send the commands described above, and more, to

the board. The script “ipmi_helper.py” is found under fc7/tags/[tag]/sw/fc7/test/scripts and

is invoked under python. Slot number conversion is performed automatically.

For more information try,

python ipmi_helper.py help

For example, to retrieve the current network configuration and sensor data from the SDR,

try,

26 FC7 R0b User Manual - draft

v0.1

python ipmi_helper.py –i –m 192.168.0.41 –s 11

assuming an MCH with IP 192.168.0.41 with null username and password, and a board in

slot 11.

WARNING: A bug exists in ipmitool that reports some sensor values in the SDR as “Disabled” even
though they are not. Using ipmiutil always reports the correct sensor values.

